990 research outputs found

    Barkhausen noise from zigzag domain walls

    Full text link
    We investigate the Barkhausen noise in ferromagnetic thin films with zigzag domain walls. We use a cellular automaton model that describes the motion of a zigzag domain wall in an impure ferromagnetic quasi-two dimensional sample with in-plane uniaxial magnetization at zero temperature, driven by an external magnetic field. The main ingredients of this model are the dipolar spin-spin interactions and the anisotropy energy. A power law behavior with a cutoff is found for the probability distributions of size, duration and correlation length of the Barkhausen avalanches, and the critical exponents are in agreement with the available experiments. The link between the size and the duration of the avalanches is analyzed too, and a power law behavior is found for the average size of an avalanche as a function of its duration.Comment: 11 pages, 12 figure

    New AGNs discovered by H.E.S.S

    Full text link
    During the last year, six new Active Galactic Nuclei (AGN) have been discovered and studied by H.E.S.S. at Very High Energies (VHE). Some of these recent discoveries have been made thanks to new enhanced analysis methods and are presented at this conference for the first time. The three blazars 1ES 0414+009, SHBL J001355.9-185406 and 1RXS J101015.9-311909 have been targeted for observation due to their high levels of radio and X-ray fluxes, while the Fermi/LAT catalogue of bright sources triggered the observation of PKS 0447-439 and AP Librae. Additionally, the BL Lac 1ES 1312-423 was discovered in the field-of-view (FoV) of Centaurus A thanks to the large exposure dedicated by H.E.S.S. to this particularly interesting source. The newly-discovered sources are presented here and in three companion presentations at this conference.Comment: 8 pages, 3 figures, proceeding from the 25th Texas Symposium on Relativistic Astrophysics (Heidelberg, Germany, 2010

    Absolute properties of the binary system BB Pegasi

    Full text link
    We present a ground based photometry of the low-temperature contact binary BB Peg. We collected all times of mid-eclipses available in literature and combined them with those obtained in this study. Analyses of the data indicate a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from the less massive to the more massive component. The physical parameters have been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc = 1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the radial velocity curves. The orbital parameters of the third body, that orbits the contact system in an eccentric orbit, were obtained from the period variation analysis. The system is compared to the similar binaries in the Hertzsprung-Russell and Mass-Radius diagram.Comment: 17 pages, 3 figures, accepted for Astronomical Journa

    Dynamical temperature study for classical planar spin systems

    Full text link
    In this micro-canonical simulation the temperature and also the specific heat are determined as averages of expressions easy to implement. The XY-chain is studied for a test. The second order transition on a cubic lattice and the first order transition on an fcc lattice are analyzed in greater detail to have a more severe test about the feasibility of this micro-canonical method.Comment: 9 pages in Latex(revtex), 7 PS-figure

    Statistics of Microstructure Formation in Martensitic Transitions Studied by a Random-Field Potts Model with Dipolar-like Interactions

    Full text link
    We have developed a simple model for the study of a cubic to tetragonal martensitic transition, under athermal conditions, in systems with a certain amount of disorder. We have performed numerical simulations that allow for a statistical study of the dynamics of the transition when the system is driven from the high-temperature cubic phase to the low-temperature degenerate tetragonal phase. Our goal is to reveal the existence of kinetic constraints that arise from competition between the equivalent variants of the martensitic phase, and which prevent the system from reaching optimal final microstructures.Comment: 11 pages, 14 figure

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio

    Collapses and explosions in self-gravitating systems

    Full text link
    Collapse and reverse to collapse explosion transition in self-gravitating systems are studied by molecular dynamics simulations. A microcanonical ensemble of point particles confined to a spherical box is considered; the particles interact via an attractive soft Coulomb potential. It is observed that the collapse in the particle system indeed takes place when the energy of the uniform state is put near or below the metastability-instability threshold (collapse energy), predicted by the mean-field theory. Similarly, the explosion in the particle system occurs when the energy of the core-halo state is increased above the explosion energy, where according to the mean field predictions the core-halo state becomes unstable. For a system consisting of 125 -- 500 particles, the collapse takes about 10510^5 single particle crossing times to complete, while a typical explosion is by an order of magnitude faster. A finite lifetime of metastable states is observed. It is also found that the mean-field description of the uniform and the core-halo states is exact within the statistical uncertainty of the molecular dynamics data.Comment: 9 pages, 14 figure

    A Uniform Approximation for the Fidelity in Chaotic Systems

    Full text link
    In quantum/wave systems with chaotic classical analogs, wavefunctions evolve in highly complex, yet deterministic ways. A slight perturbation of the system, though, will cause the evolution to diverge from its original behavior increasingly with time. This divergence can be measured by the fidelity, which is defined as the squared overlap of the two time evolved states. For chaotic systems, two main decay regimes of either Gaussian or exponential behavior have been identified depending on the strength of the perturbation. For perturbation strengths intermediate between the two regimes, the fidelity displays both forms of decay. By applying a complementary combination of random matrix and semiclassical theory, a uniform approximation can be derived that covers the full range of perturbation strengths. The time dependence is entirely fixed by the density of states and the so-called transition parameter, which can be related to the phase space volume of the system and the classical action diffusion constant, respectively. The accuracy of the approximations are illustrated with the standard map.Comment: 16 pages, 4 figures, accepted in J. Phys. A, special edition on Random Matrix Theor
    corecore